Sign up for our daily Newsletter and stay up to date with all the latest news!

Subscribe I am already a subscriber

You are using software which is blocking our advertisements (adblocker).

As we provide the news for free, we are relying on revenues from our banners. So please disable your adblocker and reload the page to continue using this site.
Thanks!

Click here for a guide on disabling your adblocker.

Sign up for our daily Newsletter and stay up to date with all the latest news!

Subscribe I am already a subscriber

"Triploidy leads to larger hydrangea"

Hydrangea macrophylla (Thunb.) Ser., florist’s or bigleaf hydrangea, is the most economically important member of the Hydrangea genus, which accounted for over $120,000,000 in U.S. nursery sales in 2014. Both diploid and triploid H. macrophylla cultivars exist and there is some evidence that triploidy leads to larger plant and floral structures.

The diploid cultivar, H. macrophylla ‘Trophee’, was previously shown to have a bimodal pollen size distribution which may be indicative of unreduced gametes. Researchers used H. macrophylla ‘Trophee’ as a parent in a series of crosses with other diploid H. macrophylla cultivars. The objective of this study was to evaluate reciprocal full-sibling H. macrophylla families for ploidy and phenotype, determine the impact of ploidy on phenotype, and determine the efficacy of unreduced gamete breeding.

Diploids and triploids were found in the offspring pool with mean 2C genome sizes of 4.5 and 6.7 pg, respectively. All offspring from crosses with ‘Trophee’ as the female parent were diploid as expected. The full-sibling family with ‘Trophee’ as the male parent contained 94% triploids, supporting the hypothesis that the bimodal pollen size distribution of ‘Trophee’ reflects the presence of unreduced male gametes. Triploids had fewer, wider inflorescences than diploids.

The stems of triploids were 16% thicker and their leaves were 20% larger than those of diploid full and half-siblings. Triploids had significantly larger stomata (9.0 μm2) than diploids (5.9 μm2). These results establish a link between ploidy and phenotype in plants of similar genetic background and support the efficacy of unreduced gametes in polyploidy breeding.

Access the full study at HortScience.
Publication date: