Sign up for our daily Newsletter and stay up to date with all the latest news!

Subscribe I am already a subscriber

You are using software which is blocking our advertisements (adblocker).

As we provide the news for free, we are relying on revenues from our banners. So please disable your adblocker and reload the page to continue using this site.
Thanks!

Click here for a guide on disabling your adblocker.

Sign up for our daily Newsletter and stay up to date with all the latest news!

Subscribe I am already a subscriber
Growth, Quality Index, and Mineral Composition

Five ornamental cabbage cultivars grown under different nitrogen fertilization rates

The fertilizer nitrogen (N) inputs to some potted plants such as ornamental cabbage (Brassica oleracea L. var. acephala D.C.) are frequently higher than the actual demand. Optimization of N fertilization rate and selecting N-efficient cultivars are important approaches to increase the nitrogen use efficiency (NUE) and to reduce environmental pollution from nitrate leaching.

The aim of this study was to assess the effect of increasing levels of nitrate (0.5, 2.5, 5, 10, or 20 mm of NO3 −) in the nutrient solution on plant growth, quality, soil plant analysis development (SPAD) index, chlorophyll fluorescence, leaf pigments, mineral composition, and NUE in five ornamental cabbage cultivars (Coral Prince, Coral Queen, Glamour Red, Northern Lights Red, and White Peacock), grown in closed subirrigation system. ‘Glamour Red’ and ‘Northern Lights Red’ needed 3.3 and 2.9 mm of NO3 − in the supplied nutrient solution, respectively, to produce 50% of predicted maximum shoot dry weight (SDW), whereas the vigorous cultivars Coral Prince, Coral Queen, and White Peacock needed 5.5, 4.7, and 4.3 mm of NO3 −, respectively.

Total leaf area (LA), SDW, SPAD index, N, Ca, and Mg concentrations increased linearly and quadratically in response to an increase of the nitrate concentration in the nutrient solution. Irrespective of cultivars, fertilizing above 10 mm NO3 − produced high-quality plants (quality index of 5) and resulted in sufficiently high tissue concentrations of N, P, K, Ca, Mg, and Fe.

Click here to purchase the complete article at hortsci.ashspublications.org.
Publication date: