Sign up for our daily Newsletter and stay up to date with all the latest news!

Subscribe I am already a subscriber

You are using software which is blocking our advertisements (adblocker).

As we provide the news for free, we are relying on revenues from our banners. So please disable your adblocker and reload the page to continue using this site.
Thanks!

Click here for a guide on disabling your adblocker.

Sign up for our daily Newsletter and stay up to date with all the latest news!

Subscribe I am already a subscriber

Genetic analysis of leaf traits in small-flower chrysanthemum

Leaf shape is an important quality trait of agronomic crops, and to control the law of genetic variation of leaf shape is of practical significance for improving the early identification and selection of agronomic crops. Variations in the leaf morphology of chrysanthemum cultivars are abundant, and previous studies have quantitatively defined and classified the leaf morphology of chrysanthemum; however, the genetic architecture of chrysanthemum leaves has not been elucidated to date.
 
In a new study, two pairs of F1 hybrid populations were constructed by using small-flower chrysanthemum varieties with differences in leaf traits, and the genetic variation rules of these important quantitative traits were further discussed based on the major gene and polygene mixed inheritance analyses.
 
The results showed that the leaves in blade shape (LBS), leaf length/width is controlled by two pairs of additive-dominant major genes (B-1), the widest part length/leaf length is controlled by two completely dominant genes (B-5); in leaf lobe shape (LLS), the lobe length/vein length is controlled by one pair of additive dominant major genes (A-1); and the lobe length/lobe width is controlled by two pairs of additive dominant major genes (B-2). The heritability of major genes was greater than 30%. For the leaf petiole shape (LPS), the petiole length is controlled by a pair of additive-dominant major genes (A-1).
 
The results showed that the leaf traits were mainly controlled by genetic factors. In addition, based on the high-density genetic map of one F1 hybrid population, it was found that 51 quantitative trait loci (QTL) were used to control the leaf traits, including two QTLs that controlled the LBS. There were 18 QTLs that controlled LLS. Moreover, the primary QTLs that controlled leaf width and lobe length were obtained.
 
The results of this study may establish a theoretical foundation for the in-depth exploration of leaf-shape-related genes in chrysanthemum and may provide a reference for future research investigating leaf-shape genetics in other agronomic crops.
 
Publication date: