Job offersmore »

Tweeting Growers

Last commentsmore »

Top 5 - yesterday

Top 5 - last week

Top 5 - last month

Exchange ratesmore »

by Roberto Lopez and Kellie Walters

Improving the efficacy of ethephon PGR spray applications

Air temperature at application and carrier water alkalinity can influence the efficacy of your ethephon plant growth regulator (PGR) applications.

by Roberto Lopez, and Kellie Walters, Michigan State University, Department of Horticulture

Untreated geranium (top) and geranium treated with ethephon (bottom). Photo by Roberto Lopez, MSU.

Plant growth regulators (PGRs) are commonly applied as foliar sprays, substrate drenches, liner dips, or bulb, tuber and rhizome dips/soaks. Using PGRs on greenhouse crops assists growers in producing uniform and compact plants that can be easily packaged, shipped and marketed to consumers. The majority of the PGRs (e.g., ancymidol, chlormequat chloride, daminozide, flurprimidol, paclobutrazol, or uniconazole) used by greenhouse growers suppress stem elongation (extension growth) by inhibiting the biosynthesis of gibberellins (GAs), which are plant hormones that regulate growth and stem elongation.

In contrast, ethephon (2-chloroethyl; phosphonic acid) is a PGR that has multiple uses as it releases ethylene—another plant hormone responsible for ripening and senescence—upon application. It can be used to suppress stem elongation; increase stem diameter; reduce apical dominance, causing an increase in branching and lateral growth; and induce abscission (abortion) of flowers and flower buds (Photo 1).

For example, if applied during propagation, it can set the “biological clock” of crops with sporadic or non-uniform flowering, such as New Guinea impatiens, to zero (Photo 2) by causing flower and flower bud abortion. Additionally, some growers use it to increase branching and reduce stem elongation of petunia (Photo 3).

Photo 2. Premature and non-uniform flowering of New Guinea impatiens in propagation. Photo by Roberto Lopez, MSU.

Photo 3. Increased branching, reduced internode elongation, and flower bud abortion on petunia treated with ethephon. Photo by Roberto Lopez, MSU.

Ethephon (e.g., Florel, 3.9 percent active ingredient; or Collate, 21.7 percent active ingredient) sprays are typically applied to greenhouse crops one to two weeks after transplant and applications can be repeated one to two weeks later. Many factors influence its efficacy including the rate, volume, use of a surfactant, spray solution pH, substrate moisture and greenhouse humidity.

The following will teach you how to optimize your ethephon spray applications by monitoring and adjusting two often overlooked cultural and environmental factors that can influence efficacy.

Water alkalinity and pH
Similar to most greenhouse chemicals and PGRs, ethephon is often applied as a liquid (spray). As ethephon changes to ethylene, it changes from a liquid to gaseous state. If ethephon breaks down into ethylene outside the plant, most of the chemical will be lost in the air. Therefore, we want it to be absorbed by the plant before it breaks down into ethylene. Ethephon breaks down into ethylene quicker as pH increases. This means the goal is to keep the pH of the spray solution after adding ethephon to your carrier water within the recommended range of 4 to 5. This is normally not a problem because ethephon is naturally acidic. However, if you have water with high alkalinity, the pH may not decrease enough to fall in the recommended range and you may need to add a buffering agent such as an acid (sulfuric acid or adjuvant, pHase5 or Indicate 5) to lower the pH.

Ethephon is naturally acidic and as the concentration increases, the solution pH will decrease. As carrier water alkalinity decreases, solution pH also decreases (Photo 4). The ultimate goal is to keep the spray solution pH between 4 and 5. However, growers with very pure water (low alkalinity) may need to add a different buffering agent that will keep the spray solution water pH from dropping too low (pH less than 3.0).

Photo 4. Influence of carrier water alkalinity and ethephon concentration on spray solution pH. Black line represents the recommend water carrier pH 4.5.

In a recent study at Michigan State University, we applied ethephon using three carrier water alkalinities (50, 150 and 300 ppm CaCO3) and four ethephon (Collate, Fine Americas, Inc., Walnut Creek, CA; 0, 250, 500 and 750 ppm) concentrations to ivy geranium, petunia and verbena. We found that extension growth deceased as the carrier water alkalinity decreased and ethephon concentration increased (Photo 5).

Photo 5. Influence of carrier water alkalinity and ethephon concentration on branching and flowering of ivy geranium. Photo by Kellie Walters.

Therefore, MSU Extension recommends you check the alkalinity of your carrier water before applying ethephon. This can be done by sending a water sample to your preferred lab or you can test your water with a hand-held alkalinity meter (Photo 6) and then make the necessary adjustments as described above. Next, add ethephon and check the pH of your spray solution with a hand-held pH meter to ensure it is between 4 and 5.

Photo 6. Portable and hand-held alkalinity meter that can be used in the greenhouse to determine your carrier water alkalinity. Photo by Kellie Walters.

Air temperature at application
We have also determined that air temperature at the time of chemical application can also influence the efficacy of ethephon. As air temperature increases, the rate of ethylene release from ethephon increases, theoretically reducing efficacy. From our research, we have found adequate ethephon efficacy when the air temperature at application was between 57 to 73 degrees Fahrenheit. However, when temperatures increased to 79 F, ethephon had little to no effect on extension growth, promoting branching or flower bud abortion (Photo 7).

Photo 7. Influence of air temperature at application on the efficacy of a 750 ppm ethephon spray on petunia. Photo by Kellie Walters.

Take-home message
If you have high water alkalinity, use a buffer or adjuvant to lower the alkalinity of your water before mixing your spray solution and ultimately the spray solution pH. Consider making your ethephon spray application on a cloudy day, early in the morning or in the evening when greenhouse temperatures are below 79 F.

This material is based upon work supported by Fine Americas, Inc., the Western Michigan Greenhouse Association, the Metro Detroit Flower Growers Association and Ball Horticultural Co. Dr. Lopez’s work is funded in part by MSU‘s AgBioResearch.

Source: MSU Extension

Publication date: 5/18/2017



Other news in this sector:

5/31/2017 Australia: Water and energy efficiency field day for flower growers
5/30/2017 "90% of crop protection products removed from water by oxidation"
5/29/2017 Dramm offers optional nozzle extensions for TracFog
5/26/2017 NL: New semi-automatic watering robot for narrow pipe-rails
5/25/2017 US (FL): UF researcher offers tips for surviving country’s worst drought
5/24/2017 How clean is your purified water really?
5/23/2017 Australia: Producing more with less
5/22/2017 Scientists claim plants can hear water
5/19/2017 Stolze ventures into Azerbaijan with Stolze Caspian
5/17/2017 US (CA): Drought emergency over, but groundwater levels still low
5/16/2017 New podcast explores agricultural impact on soil and water
5/15/2017 MIT develops new way to clear pollutants from water
5/12/2017 Unique geothermal project started in the Netherlands
5/11/2017 EPA asks States for input on new WOTUS rule
5/10/2017 Milestones, lessons from California’s historic drought
5/9/2017 Best practices in chlorination
5/8/2017 South Africa: Dutch scoping mission water & agrofood
5/5/2017 Upper leaf tip necrosis - Water stress or calcium?
5/4/2017 California and Israel co-host forum on water and agriculture policy
5/3/2017 Dutch growers invest in better water quality


Leave a comment: (max. 500 characters)

  1. All comments which are not related to the article contents will be removed.
  2. All comments with non-related commercial content, will be removed.
  3. All comments with offensive language, will be removed.

  Display email address

  new code