Sign up for our daily Newsletter and stay up to date with all the latest news!

Subscribe I am already a subscriber

You are using software which is blocking our advertisements (adblocker).

As we provide the news for free, we are relying on revenues from our banners. So please disable your adblocker and reload the page to continue using this site.
Thanks!

Click here for a guide on disabling your adblocker.

Sign up for our daily Newsletter and stay up to date with all the latest news!

Subscribe I am already a subscriber

Development and evaluation of diploid and polyploid Hibiscus moscheutos

Hibiscus moscheutos L. is an herbaceous hibiscus native to eastern North America that has been a popular landscape and container plant exhibiting large and colorful flowers in the summer. However, unsightly fruit develop and remain on the stalks at the end of the blooming season, which greatly decreases the ornamental value. Thus, breeding for sterility was attempted through ploidy level manipulation to reduce formation and growth of seed stalks, and to improve blooming vigor and longevity.

In a new study, colchicine and oryzalin were used as mitotic inhibitors to induce tetraploid breeding lines that could be used to develop sterile triploids. Germinated seedlings of ‘Luna Red’ were soaked in three concentrations of each doubling agent for three different durations.

Exposure to a low concentration of colchicine solution for a long time or to a low concentration of oryzalin for a short period was found to be effective in yielding a high number of tetraploids with a low rate of mortality. Triploids were obtained from the traditional method of crossing tetraploids with diploids. Triploid and tetraploid plants showed a decrease in height with a more compact form. Leaves of tetraploid plants were more ruffled, with an increase in overall leaf thickness, but were not different from leaves of diploids and triploids in regard to leaf mass per area (LMA). Triploid plants bloomed longer but had smaller flowers than diploid plants.

Although the whole planting was infected by aerial phytophthora, diploid, tetraploid, and triploid plants were significantly different in their tolerances: all diploid branches were infected, but only a minor infection occurred on one triploid branch, and the transmission remained slow. Flowers of tetraploid plants failed to produce pollen, whereas flowers of triploid plants produced only nonviable pollen grains and fruits aborted after pollination, which led to infertility of induced triploids.

Access the full study at HortScience
Publication date: