
Announcements
Vacancies
- Junior Sales Manager
- Technical Sales Representative, Leamington, Ontario
- Technical Sales Representative, Ancaster, Ontario
- HR Generalist
- Head Grower Strawberries (West Virginia USA)
- Global Sourcing Manager
- Buying Operations Manager (BOM Process)
- Sourcing Manager EU
- Manager Operations Ethiopia
- Manager Operations Ethiopia
"Tweeting Growers"
Top 5 - yesterday
- Flexible seed scanner goes to market in series: Make your own judgement on seed quality
- "The newest VYPR LED technology delivers a new level of flexibility and control"
- Solution for connecting heating pipes without welding
- AIPH webinar to focus on integrating plants into urban projects
- Source.ag receives investment, bringing total Series A to $27m
Top 5 - last week
Top 5 - last month
- Hasfarm’s network expands in Indonesia, partnering with Bromelia Flowers and Tropika
- "Breeders need to study the Chinese market carefully before introducing a variety"
- North America: “Unbridled optimism for Mother’s Day tempered by reality”
- “A new sales channel for flower companies without any labor or high fixed costs”
- Kenyan growers continue diversifying their assortment
Flowers actively communicate with environment
Floral volatiles play an important role in attracting pollinators such as bees and moths to ensure fertilisation and seed set. In fact, seed and fruit set in many of our crops depend on pollinators. It was already known that flowers regulate the production of volatiles to a very high degree. For instance, certain Petunias produce and emit several volatile benzoates only at night when their moth pollinators are active. Production is completely reset before dawn. For long it was thought that emission was a passive process. However, recent modelling showed that this is very unlikely, since very high levels of volatiles in the membrane around the cell would be necessary to sustain this diffusion, which are harmful to the cell.
Credits: Hanna Haring
Specific transporter
Plant Biologists from Purdue University (USA), Université Catholique de Louvain (Belgium) and the University of Amsterdam have now discovered that Petunia, a nightshades species like tomato, actively transports volatile benzoates from their petals to the air using a specific type of transporter. This ABC-type transporter was identified and cloned previously by the Dutch group (https://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/ers034) but it took several years and an international collaboration to prove its function. Since not only flowers but also leaves and roots can emit volatiles it is likely that emission from these organs is also actively regulated. ‘This finding implies that plants can regulate the emission of volatiles and thus also their communication with the environment, for example with neighbouring plants, insects and their enemies, and with beneficial and pathogenic microbes,’ concludes Robert Schuurink.
Improvement of defences
Knowledge about this mechanism, and in particular the underlying genes present opportunities to maintain this process in our crops during the breeding process, to ensure the much-needed seed and fruit set for food production. In addition, it can lead to an improvement of the defences in leaves against insects in which volatiles play an important role. ‘Future work should thus not only focus on increasing the biosynthesis of natural volatile insecticides in leaves, but also on the emission process. Moreover, we need to study how volatiles are transported over the plant cell wall, which is not well-understood’.
Publication details
Funmilayo Adebesin, Joshua R. Widhalm, Benoît Boachon, François Lefèvre, Baptiste Pierman, Joseph H. Lynch, Iftekhar Alam, Bruna Junqueira, Ryan Benke, Shaunak Ray, Justin A. Porter, Makoto Yanagisawa, Hazel Y. Wetzstein, John A. Morgan, Marc Boutry, Robert C. Schuurink & Natalia Dudareva: ‘Emission of volatile organic compounds from petunia is facilitated by an ABC transporter’ in: Science (29 June 2017); Vol. 356, No. 6345, p. 1386. DOI: 10.1126/science.aan0826
Source: University of Amsterdam
Publication date:
Receive the daily newsletter in your email for free | Click here
Other news in this sector:
- 2023-06-09 Flexible seed scanner goes to market in series: Make your own judgement on seed quality
- 2023-06-09 New multilayer LED fixture launched
- 2023-06-09 Force-multiplying robots translate to labor savings and greater productivity in nurseries
- 2023-06-09 Boosting the plant’s energy with hydrogen
- 2023-06-06 "It is becoming increasingly important to protect crops from droughts and torrential rains"
- 2023-06-06 Chlorine resistant liner developed for water storing
- 2023-06-05 Ridder’s screen innovations result in extra energy savings
- 2023-05-31 "Chiltepec is a pioneer in the use of climate screens in Mexico"
- 2023-05-30 Australia: Building code adapted to better fit greenhouse building
- 2023-05-29 "More and more can be done electrically, including high-capacity crop shredding"
- 2023-05-29 "With our payment tracker, customers see the exact status of the foreign payment"
- 2023-05-26 “No ultrafiltration without customization”
- 2023-05-25 Kenya: “Demand for on-farm cooling solutions is increasing”
- 2023-05-23 Capital injection for Blue Radix powered by 400 growers
- 2023-05-22 "Designed to simplify growing and enhance operations"
- 2023-05-18 Evaluation of mud-based culture substrate on the regeneration of verbena cuttings
- 2023-05-17 Research project to explore 5G use in greenhouse industry
- 2023-05-17 UK: Horticultural Trades Association urges action on water management grants to increase resilience to droughts
- 2023-05-16 Almost time to propagate poinsettia mums
- 2023-05-16 Could growing crops under solar panels provide food and energy at the same time?