Sign up for our daily Newsletter and stay up to date with all the latest news!

Subscribe I am already a subscriber

You are using software which is blocking our advertisements (adblocker).

As we provide the news for free, we are relying on revenues from our banners. So please disable your adblocker and reload the page to continue using this site.
Thanks!

Click here for a guide on disabling your adblocker.

Sign up for our daily Newsletter and stay up to date with all the latest news!

Subscribe I am already a subscriber

Study on candidate reference genes for quantitative gene expression analysis in Lagerstroemia indica

Quantitative gene expression analysis by qPCR requires reference genes for normalization. Lagerstroemia indica (crape myrtle) is a popular ornamental plant in the world, but suitable endogenous reference genes are lacking. To find suitable reference genes, we evaluated the stabilities of nine candidate genes in six experimental data sets: six different tissues, three leaf colors, nine flower colors, and under three abiotic stresses (salt, drought, cold) using four statistical algorithms.

A target gene LiMYB56 (homolog of Arabidopsis MYB56) was used to verify the authenticity and accuracy of the candidate reference genes. The results showed that the combination of two stably expressed reference genes, rather than a single reference gene, improved the accuracy of the qPCR. LiEF1α-2 + LiEF1α-3 was best for the tissue, salt treatment, and drought treatment sets; LiEF1α-2 + LiEF1α-1 was optimal for leaf color; LiEF1α-2 + LiACT7 was optimal for cold treatment; and LiUBC + LiEF1α-1 was best for the flower color set. Notably, LiEF1α-2 had high expression stability in all six experimental sets, implying it may be a good reference gene for expression studies in L. indica. Our results will facilitate future gene expression studies in L. indica.

Read the complete research at www.researchgate.net.

Chen, Manli & Wang, Qing & Li, Ya & Gao, Lulu & Lv, Fenni & Yang, Rutong & Wang, Peng. (2021). Candidate reference genes for quantitative gene expression analysis in Lagerstroemia indica. Molecular Biology Reports. 10.1007/s11033-021-06209-z. 

Publication date: