Sign up for our daily Newsletter and stay up to date with all the latest news!

Subscribe I am already a subscriber

You are using software which is blocking our advertisements (adblocker).

As we provide the news for free, we are relying on revenues from our banners. So please disable your adblocker and reload the page to continue using this site.
Thanks!

Click here for a guide on disabling your adblocker.

Sign up for our daily Newsletter and stay up to date with all the latest news!

Subscribe I am already a subscriber

On the classification of a greenhouse environment for roses based on AI-based surrogate models

A precise microclimate control for dynamic climate changes in greenhouses allows the industry and researchers to develop a simple, robust, reliable, and intelligent model. Accordingly, the objective of this investigation was to develop a method that can accurately define the most suitable environment in the greenhouse for an optimal yield of roses.

Herein, an optimal and highly accurate BO-DNN surrogate model was developed (based on 300 experimental data points) for a quick and reliable classification of the rose yield environment considering some of the most influential variables including soil humidity, temperature and humidity of air, CO2 concentration, and light intensity (lux) into its architecture. Initially, two BO techniques (GP and GBRT) are used for the tuning process of the hyper-parameters (such as learning rate, batch size, number of dense nodes, number of dense neurons, number of input nodes, activation function, etc.).

After that, an optimal and simple combination of the hyper-parameters was selected to develop a DNN algorithm based on 300 data points, which was further used to classify the rose yield environment (the rose yield environments were classified into four classes such as soil without water, correct environment, too hot, and very cold environments). The very high accuracy of the proposed surrogate model (0.98) originated from the introduction of the most vital soil and meteorological parameters as the inputs of the model. The proposed method can help in identifying intelligent greenhouse environments for efficient crop yields.

Read the complete research at www.researchgate.net.

Bhat, Showkat & Huang, Nen-Fu & Hussain, Imtiyaz & Bibi, Farzana & Sajjad, Uzair. (2021). On the Classification of a Greenhouse Environment for a Rose Crop Based on AI-Based Surrogate Models. Sustainability. 12. 1-18. 10.3390/su132112166. 

Publication date: